Introduction to Replica Theory
6.1 Replica Solution of REM

Take $E_{j} \sim N(0, N / 2)$

$$
z=\sum_{j=1}^{2^{N}} e^{-\beta E_{j}}
$$

1) $Z^{n}=\sum_{i_{i} \cdots i_{n}}^{2^{N}} e^{-\beta E_{i} \cdots-B E_{i n}}=\sum_{i_{i} \cdots i_{n}}^{2^{n}} e^{-\beta \sum_{j=1} \delta_{j j_{i}} E_{j}}$
2)

$$
\begin{aligned}
& \left\langle Z^{n}\right\rangle_{E_{j}}=\sum_{i, i_{n}}^{2^{N}} \frac{\mathbb{E}}{E_{j}}\left[e^{-\beta \sum_{j} F \delta_{j i}}\right]=\sum_{i, \cdots i_{n}} \prod_{j} \mathbb{E}\left[e^{-\beta E_{j} \sum_{a} \delta_{j j_{a}}}\right] \\
& =\sum_{i, \cdots i n} \prod_{j} \exp \left[\frac{N \beta^{2}}{4} \sum_{0, b} \delta_{j i \pi} \delta_{j i}\right] \\
& -\frac{E_{i}^{2}}{N}-\beta E_{j} \delta_{j ; a} \\
& =-\frac{1}{N}\left(E_{j}+\frac{\beta}{2} N \delta_{j j_{0}}\right)^{2} \\
& =0+\frac{N g^{2}}{4} \sum_{i, j b} \delta_{j i j} S_{j i b} \\
& =\sum_{i_{i} \ldots i_{n}} \exp \left[N \beta_{4}^{2} \sum_{a, b} \delta_{i a i}\right]
\end{aligned}
$$

z for a new replicated system
i) No toner disordered
ii) E is β-dep
iii) Replicas interact. Lowest cindy wen $i_{i}=\cdots i_{n}$

$$
E=\frac{-N B n^{2}}{4}
$$

The elements i_{i}.. is are independent conditional on the sample

Upon marginalizing, they become dependent

Given a configuration $i_{1} \cdots i_{n}$ of the replicas, the energy depends ally

$$
\begin{equation*}
Q_{a b}:=\delta_{i a} \tag{in}
\end{equation*}
$$

$$
\mathbb{E} Z^{n}=\sum_{Q} \mathbb{N}_{N}(Q) \exp \left[\frac{\beta^{2} N}{q} \sum_{a, b} a_{a b}\right]
$$

total \# conics $=2^{n N}$

$$
\Rightarrow N_{N}(2) \sim 2^{2(1(n-1)}
$$

But
treating replicas as
whirected graphs

Really, they are e clusters
25 Fully connected graphs
$\Rightarrow Q_{\text {ab }}$ is if ats in sum e group 0 else

$$
\Rightarrow\binom{n}{n, \cdots, n} \text { such choices of } Q
$$

For can such $Q, 2^{N}\left(2^{N}-1\right) \cdots\left(2^{N}-6+1\right)$ choices of ia for the groups

$$
\sim 2^{N g} \text { for } N \gg n \geq G
$$

$$
\begin{array}{r}
\rightarrow \mathbb{E}\left[z^{n}\right]=\sum_{Q} \exp [N g(Q)] \\
g(a)=\frac{\beta^{2}}{4} \sum_{a b} Q_{a b}+G \log 2
\end{array}
$$

$g(Q)$ is symmetric under permutation

$$
Q_{a b} \rightarrow Q_{a b}^{\pi}=Q_{1(a) \pi(b)}
$$

replica symmetry
Dominnent sudule is one where $\mathbb{R}^{T}=\mathbb{R} \forall \pi$ ie $Q=11^{\top}$ or $Q=\mathbb{1}$

1) $\mathbb{Q}_{R S, 0}=\mathbb{L}$

$$
\begin{gathered}
N\left(Q_{R s_{0}}\right)=2^{N} \cdots\left(2^{N}-n+1\right) \\
\Rightarrow s\left(Q_{R s, 0}\right)=x \log 2 \\
\Rightarrow g\left(Q_{R s_{0}}\right)=n\left(\frac{\beta^{2}}{\eta}+\log 2\right)
\end{gathered}
$$

2)

$$
\begin{aligned}
Q_{R S, 1}=11^{\top} & \Rightarrow s\left(Q_{R S, 1}\right)=\log 2 \\
1, & \Rightarrow g\left(Q_{R S, 1}\right)=\frac{n^{2} \beta^{2}}{4^{2}}+\log 2
\end{aligned}
$$

For $n>1: \beta_{>}>\beta_{c} \Rightarrow Q_{R S, 1}$ wins $\} \beta_{c}(n)=\sqrt{\frac{4 \log 2}{\pi}}$

$$
\beta+\beta_{c} \Rightarrow Q_{R S, 0} \text { wins }
$$

Vice versa for $n<1$
Rs ansate:

$$
\mathbb{E}\left[z^{n}\right]=\exp \left[N \max \left(g_{0}-g_{1}\right)\right]
$$

For $n<l$, this result is phisically strange g_{1} does not go to zero so wed get: $\mathbb{E} \neq 1$ Replica method: wee the min For mel !

Example: $\quad z_{\text {toy }}(n)=\left(\frac{2 \pi}{N}\right)^{n(n-1) / 4}$

$$
Z_{\text {toy }}=\int_{a \neq b} \pi d d_{a b} \exp \left[-\frac{N}{2} \sum_{a \neq b} Q_{a b}^{2}\right]
$$

assume RS:

$$
\begin{aligned}
Q_{a x b}^{*}=q_{0} \Rightarrow g\left(Q^{*}\right)=-\frac{1}{2} q_{0}^{2} n(n-1) \\
q_{0} \Rightarrow Z_{\text {toy }} \doteq 1 \quad \text { (correct) }
\end{aligned}
$$

For $n<1$ this is a min not a max!!
So lets take $Q_{R S, 1}$ for $\beta>\beta_{c}$
$Q_{\text {RS, } O}$ for $\beta<\beta_{c}$

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \log z & =\lim _{x \rightarrow \infty} \lim _{n \rightarrow 0} \frac{1}{N} \frac{1}{n} \log \mathbb{E}\left[z^{n}\right] \\
& =\lim _{n \rightarrow 0} \frac{1}{n} g_{0}(n, \beta)=\frac{\beta^{2}}{4}+\log 2
\end{aligned}
$$

One-step RSB:
Groups σ^{5} size $x, x / n$
$Q_{a b}=\left\{\begin{array}{ll}1 & \text { if } a_{1} h \\ 0 & \text { otherwise }\end{array}\right.$ in the same group

$$
\begin{aligned}
& \left(i_{1} \ldots i_{x}\right)\left(i_{x+1} \cdots i_{2 x}\right) \cdot \cdots\left(i_{n-x+1} \cdots i_{n}\right) \\
& 2^{N}\left(2^{N}-1\right) \cdots\left(2^{N}-\frac{n}{x}+1\right) \\
& \Rightarrow s=\frac{n}{x} \log 2 \\
& \Rightarrow n_{\text {RS }}=\frac{\beta^{2}}{y} n x+\frac{x}{n}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial y}{\partial x}=\frac{\beta^{2}}{y} n-\frac{1}{x^{2}} \log 2 \Rightarrow x^{*}=\frac{2 \sqrt{\log 2}}{\beta} \\
& \Rightarrow g_{\text {SB }}^{*}=\beta \sqrt{\log 2} n \\
& \Rightarrow \mathbb{E} \log z=\beta \log 2
\end{aligned}
$$

Another view of the replica method:
Recall $\frac{1}{N} \log \underset{F}{E}\left[e^{N_{+} F(x)}\right]=: \psi_{N}(t) \quad$ "Monet generating F ${ }^{\prime \prime}$ "

$$
\lim _{N \rightarrow \infty} T_{N}=\sup _{\vec{F} \in \mathbb{R}} t F-I(\bar{F})
$$

Now take $\rho=\frac{1}{N} \log z$

$$
\begin{aligned}
& \Rightarrow \psi(n)=\lim _{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E} z^{n} \\
& \Rightarrow \mathbb{E}\left[z^{n}\right]=\int d F \exp \left[-N I(F)-N \beta_{n} F\right] \doteq \exp \left[-N \operatorname{in}\left(I(F)+\beta_{n} F\right)\right]
\end{aligned}
$$

Calculating F

$$
\begin{aligned}
Y & =\sum_{j=1}^{2^{N}} \mu(j)^{2}=E_{E_{j}}\left[z^{-2} \sum_{j=1}^{2^{N}} e^{-2 \beta E_{j}}\right] \\
& =\lim _{x \rightarrow 0} \mathbb{E}\left[z^{n-2} \sum_{j=1}^{2^{N}} e^{-2 \beta E_{j}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow 0} \mathbb{E}\left[\sum_{i_{1} \cdots j_{n-2}} e^{-\beta E_{i} \cdots \beta E_{n-2}} \sum_{j=1}^{2^{N}} e^{-2 \beta E_{j}}\right] \\
& =\lim _{n \rightarrow 0} \mathbb{E}\left[\sum_{i_{i} \cdots i_{n}} e^{-\beta E_{i} \cdots-\beta E_{i_{n}}} \delta_{i_{1} i_{n}}\right] \\
& =\lim _{n \rightarrow 0} \frac{1}{n(n-1)} \sum_{a \neq b} \mathbb{E}\left[\sum_{j \cdots i_{n}} e^{-\beta E_{1} \cdots E_{i_{n}}} \delta_{i_{i} i_{b}}\right] \\
& =\lim _{n \rightarrow 0} \frac{1}{n(n-1)} \sum_{a \neq b}\left\langle Q_{a b}\right\rangle \\
& =\lim _{n \rightarrow 0} \frac{1}{n(n-1)} \sum_{a \neq b}\left[Q_{\mathbb{R} \in B}\right]_{a, b}=\lim _{n \rightarrow 0} \frac{n\left(x^{*}-1\right)}{n(n-1)}=1-x^{*}=1-\frac{\beta_{c}}{\beta} \\
& x
\end{aligned}
$$

8.2 p-spin glass model

$$
\begin{aligned}
& H=-\sum_{i, \ldots, i_{p}} J_{i, \ldots i_{p}} \sigma_{i,} \cdots \sigma_{i p} \quad i \in\left\{1, \cdots, 2^{n}\right\} \\
\Rightarrow & E Z^{n}=\sum_{\left\{\sigma_{i}^{\alpha}\right\}} \prod_{i<x i_{p}} \mathbb{E} \exp \left[\beta J_{i_{1} \ldots i_{p}} \sum_{a=1}^{n} \sigma_{i,}^{a} \ldots \sigma_{i p}^{a}\right]
\end{aligned}
$$

(lemmai $\langle\exp \lambda X\rangle{ }_{X \sim(1, \Delta)}=\exp \frac{\Delta \lambda^{2}}{2}$

$$
=\sum_{\left\{\sigma_{i}^{a \xi}\right\}} \prod_{i<x i_{p}} \exp \left[\frac{\beta^{2}}{4} \frac{p!}{N^{p-1}} \frac{\sum}{a, b} \sigma_{i,}^{a} \sigma_{i,}^{b} \cdots \sigma_{j p}^{a} \sigma_{i}^{b}\right]
$$

$$
\begin{aligned}
& \doteq \sum_{\left\{\sigma_{i} a\right\}} \exp \left[\frac{\beta^{2}}{y} \frac{1}{N^{p-1}} \sum_{a, b}\left(\sum_{i} \sigma_{i}^{a} \sigma_{i} b\right)^{p}\right] \\
& \text { Want } Q_{a b}=\frac{1}{N} \sum_{i} \sigma_{i}^{a} \sigma_{i}^{b} \\
& \rightarrow \quad \sum_{2 a b} N(\alpha) \exp \left[\frac{\beta^{2}}{q} N \cdot \sum_{a, b} Q_{a, b}^{p}\right] \\
& =\sum_{Q_{b}} N(Q) \exp \left[N \frac{\beta^{2} n}{4}+\frac{N \beta^{2}}{2} \sum_{a r b} Q_{a b}^{p}\right] \\
& \text { Take } 1=\int \delta\left(\theta_{a b}-\frac{1}{N} \sum_{i=1}^{N} \sigma_{i}^{a} \sigma_{i}^{b}\right) d Q_{a b} \\
& =N \int d \mathbb{Q}_{a b} \frac{d \lambda_{a b}}{2 \pi} \exp \left[-i \lambda_{a b}\left(N Q_{a b}-\sum_{i} \sigma_{i}^{a} \sigma_{i} b\right)\right] \\
& \Rightarrow \mathbb{E} z^{n} \doteq \int \prod_{a<b} d \theta_{a b} d \lambda_{a b} \exp \left[-i N \tan _{a b} \theta_{a b}+\frac{N \beta^{2} n}{4}+\frac{\beta^{2} N}{2} a_{a b}^{p}\right] \\
& \sum_{\left\{\sigma_{i}^{d}\right\}} \exp \left[i \lambda_{a b} \sigma_{i} a_{\sigma_{i}}^{b}\right] \\
& \equiv \int_{a<b} d Q_{a b} d \lambda_{a b} \exp [-N G(Q, \lambda)] \\
& G=\omega \cdot Q-\frac{\beta_{n}^{2}}{y}-\frac{\beta^{2}}{2} Q^{p}-\log \sum_{\left\{\sigma_{i}^{a}\right\}} e^{\omega_{a b} \sigma_{i}^{\alpha} \sigma_{i}^{b}} \\
& \omega_{i=i \lambda} \\
& \frac{\delta}{\delta Q} \Rightarrow \omega_{a b}=p \frac{\beta^{2}}{2} Q_{a b} p^{-1}
\end{aligned}
$$

$R S: Q=q \Rightarrow \omega=p \frac{\beta^{2}}{2} q^{p-1}$,

$$
\begin{aligned}
q & =\mathbb{E}_{z} \tanh ^{2}(z \sqrt{\omega}) \\
\Rightarrow q & =\sqrt{E} \tanh ^{2} z \beta \sqrt{\frac{p q^{p^{-1}}}{}}
\end{aligned}
$$

